Subject Index of Volumes 43 and 44

Alloys

investigations on rechargeable lithium alloys on the basis of Al-Ni and Al-Mn alloys, 421

Aluminium

investigations on rechargeable lithium alloys on the basis of Al-Ni and Al-Mn alloys, 421

Amines

conductivity and stability towards lithium metal of lithium triflate (LiSO₃CF₃) and lithium bistrifluorosulfonylimide (Li(SO₂CF₃)₂N) in amines and their mixtures with ammonia, 349

new conducting polymer networks, 445 Ammonia

conductivity and stability towards lithium metal of lithium triflate (LiSO₃CF₃) and lithium bistrifluorosulfonylimide (Li(SO₂CF₃)₂N) in amines and their mixtures with ammonia, 349

Batteries

development of cylindrical secondary lithium/polyaniline batteries, 669

Boron

a new negative electrode matrix, BC₂N, for rechargeable lithium batteries, 75

reversible potassium vanadium bronze cathodes (K_xV₆O_{13+y}) with various potassium to vanadium ratios, 603

Capacity

relationship of cathode pore-size distribution and rated capacity in Li/MnO₂ cells, 709

Carbon

a new negative electrode matrix, BC₂N, for rechargeable lithium batteries, 75 the SWING system, a nonaqueous rechargeable carbon/metal oxide cell,

high voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material, 233

lithium-ion rechargeable cells with LiCoO₂ and carbon electrodes, 241 improvement of heavy-drain discharge properties of polypyrrole cathode by the electro-codeposition of carbon powder, 611

Carbon electrodes

electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems, 47

electrochemical study of the passivating layer on lithium intercalated carbon electrodes in nonaqueous solvents, 65

studies of carbon as negative electrode materials for secondary lithium batteries, 399

stability of lithiated carbon electrodes in organic electrolytes, 409

Carbon-lithium

inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes, 413

Cathode materials

characterization of Cu₂V₂O₇ as cathode material for lithium cells by X-ray and photoelectron spectroscopy, 589

a high performance Li_xMnO_y cathode material for rechargeable lithium cells, 681

Cathode pore-size distribution relationship of cathode pore-size distribution and rated capacity in Li/MnO₂ cells, 709

Cathodes

reversible potassium vanadium bronze cathodes $(K_xV_6O_{13+y})$ with various potassium to vanadium ratios, 603

improvement of heavy-drain discharge properties of polypyrrole cathode by the electro-codeposition of carbon powder, 611

thiospinels as cathode for lithium secondary battery, 619 nickel Chevrel-phase sulfides Ni_yMo₆S_{8-z} and Ni_yMo₆S_{8-z}O_n as the cathode of lithium secondary batteries, 651

Chromium oxide

studies of spinel LiCr_xMn_{2-x}O₄ for secondary lithium battery, 539

Cobalt

lithium-ion rechargeable cells with LiCoO₂ and carbon electrodes, 241

Cobalt oxide

Li/Li,NiO₂ and Li/Li,CoO₂ rechargeable systems: comparative study and performance of practical cells, 209

the Li_xTiS₂|Li_(1-x)CoO₂ solid-state rocking chair battery, 481

the cycling properties of the Li_xNi_{1-y}. Co_yO₂ electrode, 595

a rechargeable Li/Li_xCoO₂ cell incorporating a LiCF₃SO₃--NMP electrolyte, 673

Composite dimensional manganese oxide (CMDO)

electrochemical and structural studies of the composite MnO₂ cathode doped with metal oxides, 533

Composite insertion electrodes

discharge performance of composite insertion electrodes. Analysis of discharges of 50 vol.% Li₃N/TiS₂ electrodes, 733

Copper

metal deposition and dissolution monitored by in situ scanning tunneling microscopy, 169

Copper oxide

characterization of $\text{Cu}_2\text{V}_2\text{O}_7$ as cathode material for lithium cells by X-ray and photoelectron spectroscopy, 589

Copper sulfide

copper(II) sulfide as cathode active material in secondary lithium batteries, 701

Current density

lithium electrode cycleability and morphology dependence on current density, 27

Cycleability

interfacial phenomena in polymerelectrolyte cells: lithium passivation and cycleability, 9

lithium electrode cycleability and morphology dependence on current density, 27

Cycling

effect of cycling on the lithium/electrolyte interface in organic electrolytes, 21

lithium-cycling efficiency in inorganic electrolyte solution, 405

inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes, 413

two- and three-electrode studies of cycling in experimental polymer electrolyte cells, 461

the cycling properties of the Li_xNi_{1-y}. Co_yO₂ electrode, 595

1,1-Diffuoroethene

modification of lithium/electrolyte interface by plasma polymerization of 1,1-difluoroethene, 377

Discharge behaviour

modeling the discharge behavior of the lithium/iodine battery, 111

improvement of heavy-drain discharge properties of polypyrrole cathode by the electro-codeposition of carbon powder, 611

Electrochemical lithiation

inhomogeneous electrochemical lithiation of V₂O₅-TeO₂ binary glasses in a propylene carbonate solution, 645

Electrode reactions

volatile products of electrode reactions in inorganic electrolyte, 727

Electrodes

lithium-ion rechargeable cells with LiCoO₂ and carbon electrodes, 241 electrodes for lithium batteries, 269 anodic stability of propylene carbonate on manganese dioxide electrodes, 341 insertion of lithium into RuO₂-TiO₂ electrodes, 547.

the cycling properties of the Li_xNi_{1-y}. Co_xO₂ electrode, 595

discharge performance of composite insertion electrodes. Analysis of discharges of 50 vol.% Li₃N/TiS₂ electrodes, 733

Electrolytes

impedance study of the interfaces between lithium, polyaniline, lithiumdoped MnO₂ and modified poly(ethylene oxide) electrolyte, 83

- inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes, 413
- safety study of electrolyte solutions for lithium batteries by accelerating-rate calorimetry, 523

Glasses

inhomogeneous electrochemical lithiation of V₂O₅-TeO₂ binary glasses in a propylene carbonate solution, 645

Gold

metal deposition and dissolution monitored by in situ scanning tunneling microscopy, 169

Impedance studies

impedance study for the interface and whole battery with PAN-based polymer electrolyte, 431

Inorganic electrolytes

lithium-cycling efficiency in inorganic electrolyte solution, 405

rechargeable LiCoO₂ in inorganic electrolyte solution, 583

volatile products of electrode reactions in inorganic electrolyte, 727

Iron

application of FeOOH derivatives for a secondary lithium battery, 627 Iron sulfide

relationship between composition of the electrolyte solutions and energetic performance of 1.5 V non-aqueous cells of lithium/iron sulfide system, 355

Lithium

- photoelectrochemistry of lithium, 157 thermal modelling of a high power Li/SOCl₂ cell with parallel plates, 309
- a high power lithium thionyl chloride battery for space applications, 317 conductivity and stability towards

lithium metal of lithium triflate (LiSO₃CF₃) and lithium bistrifluoro-sulfonylimide (Li(SO₂CF₃)₂N) in amines and their mixtures with ammonia, 349

relationship between composition of the electrolyte solutions and energetic performance of 1.5 V non-aqueous

- cells of lithium/iron sulfide system, 355
- space-charge model of the SEI conduction in the Li/SOCl₂ system, 391
- investigations on rechargeable lithium alloys on the basis of Al-Ni and Al-Mn alloys, 421
- insertion of lithium into RuO₂-TiO₂ electrodes, 547
- the cycling properties of the Li_xNi_{1-y}. Co_xO₂ electrode, 595
- development of cylindrical secondary lithium/polyaniline batteries, 669
- a rechargeable Li/Li_xCoO₂ cell incorporating a LiCF₃SO₃-NMP electrolyte, 673
- an update of the Li metal-free rechargeable battery based on Li_{1+x}Mn₂O₄ cathodes and carbon anodes, 689

Lithium/electrolyte interface

behavior of lithium/electrolyte interface in organic solutions, 1

interfacial phenomena in polymerelectrolyte cells: lithium passivation and cycleability, 9

effect of cycling on the lithium/electrolyte interface in organic electrolytes, 21

modification of lithium/electrolyte interface by plasma polymerization of 1,1-difluoroethene, 377

Lithium/iodine batteries

modeling the discharge behavior of the lithium/iodine battery, 111

Lithium anodes

polymer electrolyte coatings for lithium anodes in SOCl₂ cells, 385

Lithium batteries

electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems, 47

a new negative electrode matrix, BC₂N, for rechargeable lithium batteries, 75

impedance study of the interfaces between lithium, polyaniline, lithiumdoped MnO₂ and modified poly(ethylene oxide) electrolyte, 83

application of solid-polymer electrolyte in lithium batteries: ultra-thin film battery, 89

fabrication and characterization of amorphous lithium electrolyte thin

- films and rechargeable thin-film batteries, 103
- parasitic reactions and the balance of materials in lithium batteries for implantable medical devices, 119
- thin-film vanadium oxide electrodes for lithium batteries, 127
- electrochemical behaviors of Li⁺ ion conductor, Li₃PO₄-Li₂S-SiS₂, 135
- recent advances in experimental methods applied to lithium battery researches, 145
- investigation of an electrolyte for lithium secondary batteries with lithium-containing manganese dioxide as the positive material, 217
- high voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material, 233
- safety and reliability studies of primary lithium batteries, 247
- electrodes for lithium batteries, 269 the versatility of MnO₂ for lithium battery applications, 289
- ionic transport in passivating layers on the lithium electrode, 365
- studies of carbon as negative electrode materials for secondary lithium batteries, 399
- lithium/polymer/polymer solid-state rechargeable batteries, 453
- the Li_xTiS₂|Li_(1-x)CoO₂ solid-state rocking chair battery, 481
- thermal stability of lithium anodes in an amorphous V₂O₅/Li battery system, 517
- safety study of electrolyte solutions for lithium batteries by accelerating-rate calorimetry, 523
- studies of spinel LiCr_xMn_{2-x}O₄ for secondary lithium battery, 539
- potassium vanadates promising materials for secondary lithium batteries, 561
- rechargeable γ -MnO₂ for lithium batteries using a sulfone-based electrolyte at 150 °C, 569
- V₂O₄S a new transition metal oxysulfide as positive for lithium batteries, 577
- thiospinels as cathode for lithium secondary battery, 619
- application of FeOOH derivatives for a secondary lithium battery, 627

- nickel Chevrel-phase sulfides Ni,Mo₆S_{8-z} and Ni,Mo₆S_{8-z}O_n as the cathode of lithium secondary batteries, 651
- copper(II) sulfide as cathode active material in secondary lithium batteries, 701
- Lithium-carbon compounds
 - some aspects on the preparation, structure and physical and electrochemical properties of Li,C₆, 39
- Lithium-carbon intercalation
 - electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems, 47
 - electrochemical study of the passivating layer on lithium intercalated carbon electrodes in nonaqueous solvents, 65

Lithium cells

- interfacial phenomena in polymerelectrolyte cells: lithium passivation and cycleability, 9
- effect of cycling on the lithium/electrolyte interface in organic electrolytes, 21
- a model for the deliverable capacity of the TiS₂ electrode in a Li/TiS₂ cell, 181
- a study on electrolytes for manganese dioxide-lithium cells, 253
- safety aspects in primary high-rate lithium cells, 259
- lithium-cycling efficiency in inorganic electrolyte solution, 405
- stability of lithiated carbon electrodes in organic electrolytes, 409
- characterization of Cu₂V₂O₇ as cathode material for lithium cells by X-ray and photoelectron spectroscopy, 589
- a high performance Li_xMnO_y cathode material for rechargeable lithium cells, 681
- relationship of cathode pore-size distribution and rated capacity in Li/MnO₂ cells, 709
- optimized lithium oxyhalide cells, 715 Lithium electrodes
 - lithium electrode cycleability and morphology dependence on current density, 27
 - inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes, 413

polarization behavior of lithium electrode in polymeric solid electrolytes, 439

Lithium insertion

lithium insertion into TiS₂ from various electrolytes, 301

Lithium intercalation

transition metal displacement in cathodic host structures upon lithium intercalation, 277

structural and electrochemical characteristics of a hollandite-type 'Li_xMnO₂', 657

Lithium oxide

preparation and electrochemical characteristics of new Li-Mn-V-O system as positive materials for rechargeable lithium batteries, 635

Manganese

investigations on rechargeable lithium alloys on the basis of Al-Ni and Al-Mn alloys, 421

an update of the Li metal-free rechargeable battery based on Li_{1+x}Mn₂O₄ cathodes and carbon anodes, 689

Manganese dioxide

impedance study of the interfaces between lithium, polyaniline, lithiumdoped MnO₂ and modified poly(ethylene oxide) electrolyte, 83

investigation of an electrolyte for lithium secondary batteries with lithium-containing manganese dioxide as the positive material, 217

a study on electrolytes for manganese dioxide-lithium cells, 253

the versatility of MnO₂ for lithium battery applications, 289

anodic stability of propylene carbonate on manganese dioxide electrodes, 341

Manganese oxide

electrochemical and structural studies of the composite MnO₂ cathode doped with metal oxides, 533

studies of spinel LiCr_xMn_{2-x}O₄ for secondary lithium battery, 539

rechargeable lithium battery with spinelrelated λ-MnO₂. I. Synthesis of λ-MnO₂ for battery applications, 551

rechargeable γ-MnO₂ for lithium batteries using a sulfone-based electrolyte at 150 °C, 569

preparation and electrochemical characteristics of new Li-Mn-V-O system as positive materials for rechargeable lithium batteries, 635

structural and electrochemical characteristics of a hollandite-type 'Li_xMnO₂', 657

Metal deposition

metal deposition and dissolution monitored by *in situ* scanning tunneling microscopy, 169

Metal dissolution

metal deposition and dissolution monitored by in situ scanning tunneling microscopy, 169

Metallized separators

metallized microporous polypropylene membranes as a support for thin-film electrodes, 493

Microbatteries

all-solid-state lithium microbatteries, 487 a thin-film solid-state microbattery, 505

Negative electrode

a new negative electrode matrix, BC₂N, for rechargeable lithium batteries, 75

high voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material, 233

studies of carbon as negative electrode materials for secondary lithium batteries, 399

Nickel

investigations on rechargeable lithium alloys on the basis of Al-Ni and Al-Mn alloys, 421

nickel Chevrel-phase sulfides Ni₂Mo₆S_{8-z} and Ni₂Mo₆S_{8-z}O_n as the cathode of lithium secondary batteries, 651

Nickel oxide

Li/Li_xNiO₂ and Li/Li_xCoO₂ rechargeable systems: comparative study and performance of practical cells, 209 the cycling properties of the Li_xNi_{1-y}. Co_yO₂ electrode, 595

Nitride

a new negative electrode matrix, BC_2N , for rechargeable lithium batteries, 75 Non-aqueous cells

relationship between composition of the electrolyte solutions and energetic performance of 1.5 V non-aqueous cells of lithium/iron sulfide system, 355

Organic electrolytes

behavior of lithium/electrolyte interface in organic solutions, 1

effect of cycling on the lithium/electrolyte interface in organic electrolytes, 21

a rechargeable Li/Li,CoO2 cell incorporating a LiCF₃SO₃-NMP electrolyte,

an update of the Li metal-free rechargeable battery based on Li_{1+r}Mn₂O₄ cathodes and carbon anodes, 689

Oxyhalide

optimized lithium oxyhalide cells, 715 Oxysulfide

 V_2O_4S — a new transition metal oxysulfide as positive for lithium batteries, 577

Parasitic reactions

parasitic reactions and the balance of materials in lithium batteries for implantable medical devices, 119

Passivating layers

ionic transport in passivating layers on the lithium electrode, 365

Photoelectrochemistry

photoelectrochemistry of lithium, 157

Polarization behaviour

polarization behavior of lithium electrode in polymeric solid electrolytes,

Polyacrylonitrile

impedance study for the interface and whole battery with PAN-based polymer electrolyte, 431

Polyaniline

impedance study of the interfaces between lithium, polyaniline, lithiumdoped MnO₂ and modified poly(ethylene oxide) electrolyte, 83 polyaniline used as a positive in solid-state lithium battery, 499

development of cylindrical secondary lithium/polyaniline batteries, 669

Poly(ethylene oxide)

impedance study of the interfaces between lithium, polyaniline, lithiumdoped MnO2 and modified poly(ethylene oxide) electrolyte, 83

block copolymers of poly(ethylene oxide) materials for polymer electrolytes (transport properties), 467

Polymer-electrolyte batteries ambient temperature rechargeable polymer-electrolyte batteries, 195

Polymer-electrolyte cells

interfacial phenomena in polymerelectrolyte cells: lithium passivation and cycleability, 9

Polymer electrolyte coatings

polymer electrolyte coatings for lithium anodes in SOCl2 cells, 385

Polymer electrolytes

impedance study for the interface and whole battery with PAN-based polymer electrolyte, 431

polarization behavior of lithium electrode in polymeric solid electrolytes,

new conducting polymer networks, 445

lithium/polymer/polymer solid-state rechargeable batteries, 453

two-and three-electrode studies of cycling in experimental polymer electrolyte cells, 461

block copolymers of poly(ethylene oxide) materials for polymer electrolytes (transport properties), 467

enhancement of the ionic conductivity and the amorphous state of solid polymer electrolytes for rechargeable lithium batteries, 473

Polypropylene membranes

metallized microporous polypropylene membranes as a support for thin-film electrodes, 493

Polypyrrole

improvement of heavy-drain discharge properties of polypyrrole cathode by the electro-codeposition of carbon powder, 611

Potassium

potassium vanadates - promising materials for secondary lithium batteries, 561

reversible potassium vanadium bronze cathodes $(K_xV_6O_{13+y})$ with various potassium to vanadium ratios, 603

Propylene carbonate

anodic stability of propylene carbonate on manganese dioxide electrodes,

inhomogeneous electrochemical lithiation of V2O5-TeO2 binary glasses in a propylene carbonate solution, 645

Rechargeable batteries

an update of the Li metal-free rechargeable battery based on Li_{1+x}Mn₂O₄ cathodes and carbon anodes, 689

Rechargeable lithium batteries

design concepts of high power bipolar rechargeable lithium battery, 327

enhancement of the ionic conductivity and the amorphous state of solid polymer electrolytes for rechargeable lithium batteries, 473

rechargeable lithium battery with spinelrelated λ -MnO₂. I. Synthesis of λ -MnO₂ for battery applications, 551

rechargeable LiCoO₂ in inorganic electrolyte solution, 583

preparation and electrochemical characteristics of new Li-Mn-V-O system as positive materials for rechargeable lithium batteries, 635

Rechargeable lithium cells

Li/Li_xNiO₂ and Li/Li_xCoO₂ rechargeable systems: comparative study and performance of practical cells, 209

lithium-ion rechargeable cells with LiCoO₂ and carbon electrodes, 241

a rechargeable Li/Li₂CoO₂ cell incorporating a LiCF₃SO₃-NMP electrolyte, 673

a high performance Li_xMnO_y cathode material for rechargeable lithium cells, 681

Reliability

safety and reliability studies of primary lithium batteries, 247

Rubidium oxide

insertion of lithium into RuO₂-TiO₂ electrodes, 547

Safety

safety and reliability studies of primary lithium batteries, 247

safety aspects in primary high-rate lithium cells, 259

safety study of electrolyte solutions for lithium batteries by accelerating-rate calorimetry, 523

Sealed minicells

recent advances in experimental methods applied to lithium battery researches, 145

Self-discharge

inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes, 413

Solid-electrolyte interface

space-charge model of the SEI conduction in the Li/SOCl₂ system, 391

Solid-polymer electrolyte

application of solid-polymer electrolyte in lithium batteries: ultra-thin film battery, 89

Solid-state lithium batteries

electrochemical behaviors of Li⁺ ion conductor, Li₃PO₄-Li₂S-SiS₂, 135

all-solid-state lithium microbatteries, 487

polyaniline used as a positive in solidstate lithium battery, 499

a thin-film solid-state microbattery, 505 Space applications

a high power lithium thionyl chloride battery for space applications, 317

Space-charge model

space-charge model of the SEI conduction in the Li/SOCl₂ system, 391

Spinel oxides

an update of the Li metal-free rechargeable battery based on Li_{1+x}Mn₂O₄ cathodes and carbon anodes, 689

Sulfide glass

electrochemical behaviors of Li⁺ ion conductor, Li₃PO₄-Li₂S-SiS₂, 135

Sulfides

nickel Chevrel-phase sulfides Ni_yMo₆S_{8-z} and Ni_yMo₆S_{8-z}O_n as the cathode of lithium secondary batteries, 651

Sulfone-based electrolytes

rechargeable γ-MnO₂ for lithium batteries using a sulfone-based electrolyte at 150 °C, 569

Tellurium oxide

inhomogeneous electrochemical lithiation of V₂O₅-TeO₂ binary glasses in a propylene carbonate solution, 645

Thermal modelling

thermal modelling of a high power Li/SOCl₂ cell with parallel plates, 309

Thermal stability

thermal stability of lithium anodes in an amorphous V₂O₅/Li battery system, 517

Thin-film batteries

fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, 103

thin-film vanadium oxide electrodes for lithium batteries, 127

Thin-film electrodes

metallized microporous polypropylene membranes as a support for thin-film electrodes, 493

Thionyl chloride

thermal modelling of a high power Li/SOCl₂ cell with parallel plates, 309

a high power lithium thionyl chloride battery for space applications, 317

polymer electrolyte coatings for lithium anodes in SOCl₂ cells, 385

space-charge model of the SEI conduction in the Li/SOCl₂ system, 391

Thiospinels

thiospinels as cathode for lithium secondary battery, 619

Titanium disulfide

a model for the deliverable capacity of the TiS₂ electrode in a Li/TiS₂ cell, 181

lithium insertion into TiS₂ from various electrolytes, 301

design concepts of high power bipolar rechargeable lithium battery, 327

the Li_xTiS₂|Li_(1-x)CoO₂ solid-state rocking chair battery, 481

Titanium oxide

insertion of lithium into RuO₂-TiO₂ electrodes, 547

Transition metals

the SWING system, a nonaqueous rechargeable carbon/metal oxide cell, 223

transition metal displacement in cathodic host structures upon lithium intercalation, 277

Ultra-thin lithium batteries

application of solid-polymer electrolyte in lithium batteries: ultra-thin film battery, 89

Vanadium

potassium vanadates — promising materials for secondary lithium batteries, 561

V₂O₄S — a new transition metal oxysulfide as positive for lithium batteries. 577

reversible potassium vanadium bronze cathodes (K_xV₆O_{13+y}) with various potassium to vanadium ratios, 603

Vanadium oxides

thermal stability of lithium anodes in an amorphous V₂O₅/Li battery system, 517

characterization of Cu₂V₂O₇ as cathode material for lithium cells by X-ray and photoelectron spectroscopy, 589

preparation and electrochemical characteristics of new Li-Mn-V-O system as positive materials for rechargeable lithium batteries, 635

inhomogeneous electrochemical lithiation of V₂O₅-TeO₂ binary glasses in a propylene carbonate solution, 645

Vanadium oxide electrodes

thin-film vanadium oxide electrodes for lithium batteries, 127